Arginine therapy of transgenic-knockout sickle mice improves microvascular function by reducing non-nitric oxide vasodilators, hemolysis, and oxidative stress.

نویسندگان

  • Dhananjay K Kaul
  • Xiaoqin Zhang
  • Trisha Dasgupta
  • Mary E Fabry
چکیده

In sickle cell disease, nitric oxide (NO) depletion by cell-free plasma hemoglobin and/or oxygen radicals is associated with arginine deficiency, impaired NO bioavailability, and chronic oxidative stress. In transgenic-knockout sickle (BERK) mice that express exclusively human alpha- and beta(S)-globins, reduced NO bioavailability is associated with induction of non-NO vasodilator enzyme, cyclooxygenase (COX)-2, and impaired NO-mediated vascular reactivity. We hypothesized that enhanced NO bioavailability in sickle mice will abate activity of non-NO vasodilators, improve vascular reactivity, decrease hemolysis, and reduce oxidative stress. Arginine treatment of BERK mice (5% arginine in mouse chow for 15 days) significantly reduced expression of non-NO vasodilators COX-2 and heme oxygenase-1. The decreased COX-2 expression resulted in reduced prostaglandin E(2) (PGE(2)) levels. The reduced expression of non-NO vasodilators was associated with significantly decreased arteriolar dilation and markedly improved NO-mediated vascular reactivity. Arginine markedly decreased hemolysis and oxidative stress and enhanced NO bioavailability. Importantly, arteriolar diameter response to a NO donor (sodium nitroprusside) was strongly correlated with hemolytic rate (and nitrotyrosine formation), suggesting that the improved microvascular function was a response to reduced hemolysis. These results provide a strong rationale for therapeutic use of arginine in sickle cell disease and other hemolytic diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of fetal hemoglobin on microvascular regulation in sickle transgenic-knockout mice.

In sickle cell disease, intravascular sickling and attendant flow abnormalities underlie the chronic inflammation and vascular endothelial abnormalities. However, the relationship between sickling and vascular tone is not well understood. We hypothesized that sickling-induced vaso-occlusive events and attendant oxidative stress will affect microvascular regulatory mechanisms. In the present stu...

متن کامل

Impaired nitric oxide-mediated vasodilation in transgenic sickle mouse.

Transgenic sickle mice expressing human beta(S)- and beta(S-Antilles)-globins show intravascular sickling, red blood cell adhesion, and attenuated arteriolar constriction in response to oxygen. We hypothesize that these abnormalities and the likely endothelial damage, also reported in sickle cell anemia, alter nitric oxide (NO)-mediated microvascular responses and hemodynamics in this mouse mod...

متن کامل

Antisickling property of fetal hemoglobin enhances nitric oxide bioavailability and ameliorates organ oxidative stress in transgenic-knockout sickle mice.

In sickle cell disease (SCD), the events originating from hemoglobin S polymerization and intravascular sickling lead to reperfusion injury, hemolysis, decreased nitric oxide (NO) bioavailability, and oxidative stress. Oxidative stress is implicated as a contributing factor to multiple organ damage in SCD. We hypothesize that inhibition of sickling by genetic manipulation to enhance antisicklin...

متن کامل

Comment on "The influence of hydroxyurea on oxidative stress in sickle cell anemia"

Sickle cell disease (SCD) is a monogenetic disorder caused by single amino acid change in the beta globin gene. This mutation facilitates the production of unstable sickle hemoglobin (Hb S) which upon deoxygenation forms higher order aggregates which cause erythrocyte rigidity. These rigid cells block the microvasculature resulting in vaso-occlusion, tissue ischemia, organ damage, pain and deat...

متن کامل

Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability.

Pulmonary hypertension is a highly prevalent complication of sickle cell disease and is a strong risk factor for early mortality. However, the pathophysiologic mechanisms leading to pulmonary vasculopathy remain unclear. Transgenic mice provide opportunities for mechanistic studies of vascular pathophysiology in an animal model. By microcardiac catheterization, all mice expressing exclusively h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 295 1  شماره 

صفحات  -

تاریخ انتشار 2008